ZROI 2022CSP7连测 Round1 解题报告
100 + 30 + 70 + 0,rk 32.
A
考虑把
题目要求的是最小,所以我们并不需要考虑
ll x,n;
vector <pll> p;
ll ffpow(ll a,ll b) {
ll ans = 1;
for (;b;b >>= 1) {
if (b & 1) ans = ans * a;
a = a * a;
}
return ans;
}
signed main() {
read(n);
for (ll i = 2;i * i <= n;++i) {
if (n % i == 0) {
ll cnt = 0;
while (n % i == 0) {++cnt,n /= i;}
p.push_back(mp(i,cnt));
}
}
if (n > 1) p.push_back(mp(n,1));
ll ans = 1;
bool flag = 1;
for (auto e : p) {
if (e.second > 1) flag = 0;
ans *= ffpow(e.first,(e.second + 1) / 2);
}
if (flag) puts("-1");
else printf("%lld\n",ans);
return 0;
}
B
算法 1
对于
算法 2
题目中给出了一个很强的性质:
对于
对于
对于
const ll mod = 998244353;
const double eps = 1e-10;
const int N = 1e5 + 10;
inline ll add(ll x, ll y) {return (x += y) >= mod ? x - mod : x;}
inline ll dec(ll x, ll y) {return (x -= y) < 0 ? x + mod : x;}
inline ll mul(ll x, ll y) {return (ll)x * y % mod;}
int n;
ll jc[N],inv[N],a[N];
ll ffpow(ll a,ll b) {
ll ans = 1;
for (;b;b >>= 1) {
if (b & 1) ans = mul(ans,a);
a = mul(a,a);
}
return ans;
}
ll C(ll n,ll m) {
if (n < m) return 0;
return jc[n] * inv[m] % mod * inv[n-m] % mod % mod;
}
signed main() {
read(n);
jc[0] = 1;
for (int i = 1;i <= n;++i) {
jc[i] = mul(jc[i-1],i);
}
inv[n] = ffpow(jc[n],mod - 2);
for (int i = n - 1;i >= 0;--i) {
inv[i] = mul(inv[i + 1],i + 1);
}
int tot = 0,x = 0,y = 0,z = 0;
for (int i = 1;i <= n;++i) {
int p;read(p);
if (p == 4 || p == 8 || p == 2) a[++tot] = 2;
else if (p == 3 || p == 9) a[++tot] = 1;
else if (p == 1) ++x;
else if (p == 5) ++y;
else if (p == 7) ++z;
else a[++tot] = 6;
}
ll ans = mul(C(n,x),mul(C(n-x,y),C(n-x-y,z)));
int A = 0,b = 0;
for (int i = 1;i <= tot;++i) {
if (a[i] == 1) ++A;
else if (a[i] == 2) ++b;
else ans = mul(ans,C(A+b,A)),A = b = 0;
}
ans = mul(ans,C(A+b,A)),A = b = 0;
printf("%lld\n",ans);
}
C
算法 1
通过暴力/直觉发现答案具有凹性,直接大力三分出目标值,暴力计算时间复杂度是
算法2
思考我们能不能优化查询的过程,我们发现计算权值的本质可以分为两个部分:小于
这里的实现是一种不同于场上实现的较快的三分写法。
const int N = 1e5 + 10;
ll n,a,b,x[N],c[N],qq[N],t[N],cnt,rk[N];
ll f[N];
struct node {
int l,r;
ll sum,cnt;
}tree[N<<2];
void build(int p,int l,int r) {
tree[p].l = l,tree[p].r = r;
if (l == r) return ;
int mid = (l + r) >> 1;
build(p << 1,l,mid);
build(p << 1 | 1,mid + 1,r);
}
void modify(int p,int pos,ll k) {
if (tree[p].l == tree[p].r) {
tree[p].sum += k;
tree[p].cnt += 1;
return ;
}
int mid = (tree[p].l + tree[p].r) >> 1;
if (pos <= mid) modify(p << 1,pos,k);
else modify(p << 1 | 1,pos,k);
tree[p].sum = (tree[p << 1].sum + tree[p << 1 | 1].sum);
tree[p].cnt = (tree[p << 1].cnt + tree[p << 1 | 1].cnt);
}
ll query1(int p,int l,int r) {
if (tree[p].l >= l && tree[p].r <= r) {
return tree[p].sum;
}
int mid = (tree[p].l + tree[p].r) >> 1;
ll ans = 0;
if (l <= mid) ans += query1(p << 1,l,r);
if (r > mid) ans += query1(p << 1 | 1,l,r);
return ans;
}
ll query2(int p,int l,int r) {
if (tree[p].l >= l && tree[p].r <= r) {
return tree[p].cnt;
}
int mid = (tree[p].l + tree[p].r) >> 1;
ll ans = 0;
if (l <= mid) ans += query2(p << 1,l,r);
if (r > mid) ans += query2(p << 1 | 1,l,r);
return ans;
}
ll calc(int val,int pos) {
ll ans = a *((qq[val] * query2(1,1,val)) - (query1(1,1,val)));
ans += b * (query1(1,val + 1,cnt) - (query2(1,val+1,cnt) * qq[val]));
return ans;
}
ll solve(int pos) {
int l = 1,r = cnt;
ll lans = 0,rans = 0,ans = 1e18;
while ((l + 1) < r) {
int mid = (l + r) >> 1;
ll ans1 = calc(mid - 1,pos),ans2 = calc(mid + 1,pos);
if (ans1 > ans2) l = mid;
else r = mid;
}
//printf("pos:%d\n",l);
return min(calc(l,pos),calc(r,pos));
}
signed main() {
//FO(test)
read(n,a,b);
for (int i = 1;i <= n;++i) read(x[i]),c[i] = x[i];
sort(c+1,c+1+n);
for (int i = 1;i <= n;++i) if (c[i] != c[i-1]) qq[++cnt] = c[i];
for (int i = 1;i <= n;++i) t[i] = lower_bound(qq + 1,qq + 1 + cnt,x[i]) - qq;
build(1,1,cnt);
for (int i = 1;i <= n;++i) {
modify(1,t[i],x[i]);
printf("%lld\n",solve(i));
}
return 0;
}
算法3
线段树部分到头了,我们考虑两个点变化的时候挪动的个数非常有限,事实上可以证明至多只会变
#include<bits/stdc++.h>
using namespace std;
#define MAXN 200005
#define int long long
int n;
int x[MAXN],a,b;
int ans;
priority_queue<int> down;
priority_queue<int,vector<int>,greater<int> >up;
int sumup,sumdown;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cin>>n>>a>>b;
int cnt=0,l=0;
for(int i=1; i<=n; i++) cin>>x[i];
for(int i=1; i<=n; i++) {
if(x[i]>l) {
up.push(x[i]);
sumup+=x[i];
} else {
int w=down.top();down.pop();sumdown-=w;
up.push(w);sumup+=w;
down.push(x[i]);sumdown+=x[i];
}
int k=(i*b)/(a+b)+1;
while(cnt<k) {
int w=up.top();up.pop();sumup-=w;
down.push(w);sumdown+=w;cnt++;
}
l=down.top();
ans=(cnt*l-sumdown)*a+(sumup-(i-cnt)*l)*b;
cout<<ans<<"\n";
}
return 0;
}
D
我们考虑这个东西怎么分开来计算,显然对于一个
我们记
首先我们考虑,实际上我们并不是对于每一种询问都需要重新计算
对于不包含情况,我们实际上不需要处理额外的
对于包含情况,可以看图理解一下:
我们要计算的答案显然是两个绿色部分相乘,那么我们发现常规来计算
int get(int x,int y) {
while (top[x] != top[y]) {
if (fat[top[x]] == y) return top[x];
x = fat[top[x]];
}
return rk[dfn[y] + 1];
}
if (lca == x) {
printf("%d %d\n",get(y,x),g[get(y,x)]);
ans = mul(mul(g[get(y,x)],f[y]),dis);
} else {
ans = mul(mul(f[x],f[y]),dis);
}
所以我们就在 但是我猜没几个人写。
inline int add(int x, int y) {return (x += y) >= mod ? x - mod : x;}
inline int del(int x, int y) {return (x -= y) < 0 ? x + mod : x;}
inline int mul(int x, int y) {return (ll)x * y % mod;}
const int N = 1e6 + 10;
int n,q,dep[N],fat[N],tag[N],ans1,ans2,f[N],g[N],top[N],son[N],siz[N],dfn[N],rk[N],cnt;
vector <int> G[N];
ll ffpow(ll a,ll b) {
ll ans = 1;
for (;b;b >>= 1) {
if (b & 1) ans = mul(ans,a);
a = mul(a,a);
}
return ans;
}
void dfs(int x,int fa) {
dep[x] = dep[fa] + 1;
siz[x] = 1;
fat[x] = fa;
son[x] = 0;
for (auto y : G[x]) {
if (y != fa) {
dfs(y,x);
siz[x] += siz[y];
if (siz[y] > siz[son[x]]) son[x] = y;
}
}
}
void dfs1(int x,int fa) {
dfn[x] = ++cnt,rk[cnt] = x;
if (son[fa] != x) top[x] = x;
else top[x] = top[fa];
if (son[x]) dfs1(son[x],x);
else return ;
for (auto y : G[x]) {
if (y != fa && y != son[x]) {
dfs1(y,x);
}
}
}
int LCA(int x,int y) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) swap(x,y);
x = fat[top[x]];
}
return dep[x] < dep[y] ? x : y;
}
void dfs2(int x,int fa) {
f[x] = 1;
for (auto y : G[x]) {
if (y != fa) {
dfs2(y,x);
f[x] = add(f[x],mul(2,f[y]));
}
}
}
void dfs3(int x,int fa) {
for (auto y : G[x]) {
if (y != fa) {
g[y] = del(add(f[x],add(g[x],g[x])),add(f[y],f[y]));
dfs3(y,x);
}
}
}
int get(int x,int y) {
while (top[x] != top[y]) {
//printf("%d %d\n",top[x],top[y]);
if (fat[top[x]] == y) return top[x];
x = fat[top[x]];
}
return rk[dfn[y] + 1];
}
signed main() {
read(n);
for (int i = 1;i < n;++i) {
int x,y;read(x,y);
G[x].push_back(y);
G[y].push_back(x);
}
dfs(1,0);
dfs1(1,0);
dfs2(1,0);
dfs3(1,0);
read(q);
for (int i = 1;i <= q;++i) {
int x,y;read(x,y);
int lca = LCA(x,y);
if (dep[x] > dep[y]) swap(x,y);
int dis = ffpow(2,dep[x] + dep[y] - 2 * dep[lca]);
ll ans = 0;
if (lca == x) {
printf("%d %d\n",get(y,x),g[get(y,x)]);
ans = mul(mul(g[get(y,x)],f[y]),dis);
} else {
ans = mul(mul(f[x],f[y]),dis);
}
printf("%d\n",ans);
}
}
本作品采用 知识共享署名-相同方式共享 4.0 国际许可协议 进行许可。